|
Cramér's V (φc) |
---|
In statistics, Cramér's V (sometimes referred to as Cramér's phi and denoted as φc) is a popular measure of association between two nominal variables, giving a value between 0 and +1 (inclusive). It is based on Pearson's chi-squared statistic and was published by Harald Cramér in 1946[1]
Contents |
φc is the intercorrelation of two discrete variables[2] and may be used with variables having two or more levels. φc is a symmetrical measure, it does not matter which variable we place in the columns and which in the rows. Also, the order of rows/columns doesn't matter, so φc may be used with nominal data types or higher (ordered, numerical, etc)
Cramér's V may also be applied to goodness of fit chi-squared models when there is a 1×k table (e.g: r=1). In this case k is taken as the number of optional outcomes and it functions as a measure of tendency towards a single outcome.
Cramér's V varies from 0 (corresponding to no association between the variables) to 1 (complete association) and can reach 1 only when the two variables are equal to each other.
φc2 is the mean square canonical correlation between the variables.
In the case of a 2×2 contingency table Cramér's V is equal to the Phi coefficient.
Note that as chi-squared values tend to increase with the number of cells, the greater the difference between r (rows) and c (columns), the more likely φc will tend to 1 without strong evidence of a meaningful correlation.
Cramér's V is computed by taking the square root of the chi-squared statistic divided by the sample size and the length of the minimum dimension (k is the smaller of the number of rows r or columns c).
The formula for the φc coefficient is:
where:
The p-value for the significance of φc is the same one that is calculated using the Pearson's chi-squared test .
The formula for the variance of φc is known[3].
Other measures of correlation for nominal data:
Other related articles:
|